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INFLUERCE OF RIBS ON STRENGTH OF SPARS.*
By L. Ballenstedt.

In calculating the strength of airplane wing spars, the as-
sumption is usuwal that the ribs are connected to the spars by
flexible jeints. This assumption is not accurate, as the ribs
are attached very firmly to the spars by means of brackets, nails
and glue. This method of attachment is so rigid, with reasonably
good workmanship, that it is justifiable to assume that the ribs
are rigidly attached to the spars,

The aim of the following investigation is to determine what
effect this type of joint has on the strength of the spars. The
-investigation was suggested hy the striking fact that the practi-
cal loading tgsts generally gave greater strength and smaller de-
flection than strength calculations based on the assumption of
ribs attached by flexible joints., The difference was particularly
noticeable, with heavily offset loading and arises from the fact
that the more heavily loaded spar itransmits a portion of its leoad
through the ribs to the more lightly loaded spar,

Fig. 1 shows the framework of the wing in perspective. I%
consists of two spars with nine ribs, and rests on points 4 - B -
C - D, A statically determinate system is produced, when all the
ribs are cut through with the exception of the ridb A - C (hatched
in Fig., 1). Two simple spars A - B and € - D are thus obtained,

* From Technische Berichte, Volume III, No, 4, pp. 100-107, (1918).
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The Rib A -~ ¢ is regQuired in ordér to prevent the spars from turn-
ing about their longitudimal axis. For symmetry, the central rib
might be considered as part of the statically determinate sysvuem
and the rib A - C could then be cut, but this is not of advantage
in the computation, since it makes the determiﬁation of the dis-
placement &g5, O&p .... etc. more complicated. At the points of
section of the ribs, three urnknowns generally appear: longitudinal
force, shearing force and beﬁding moment, and the system is, there-
fore, 3 X 8 = 34-fold statically indeterminate,

In order not to complicate the investigation unnecessarily, the
following assumptions may be made, viz:

1. The external forces act at right angles to the plane
through the longitudinal axis of the spars, The longitudinal
forces in the (straight) ribs will then be zero.

3. The moments of inertia and the areas of the two spar sec-
tions are equal and the external forces act only on the spars, not
on the ribs, The bending moments in the central portions of the
ribs thus become zero, The strict proof of this is prut in the
Appendix in order not to interrupt the course of the analysis.
Besides, the arrangement shows at once that the elastic lines of
the ribs must have a point of flexion at the center i, Fig, 11,
since the angle of torsiom A8, of corresponding cross-sections
of the two spars must be equal with equal cross—section and without

load on the ribs.

The wing frame is now only eight-fold statically indeterminate.
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Let the shearing forces acting at the center of the ribs be desig-
nated by Xz, Xy, Xg, eto: With rigid supporis, these rmust satis-
fy the elastic conditions-*

L. X 85 +Xp &b+ %X &g+ «e:-Xn 8an = IPp Opa
3 Xy Oap+Xp Spp+Xe Opg+ .e.-Xn OSph = ZPy Spp
3. X5 Bac + Xp Opc + Xo Ocog + ....Xn Och = ZPm Ome

.
-
L]
L]

a e L .
L]
. .
.
.

[ . L] L
.
-

4 a e L] . = - - .

8. Xa 6ah +Xv S%h+%X OS%h+ ....kn Onh = ZPm Smn

1. Calculation of coefficients of the unknowns.

With loads X5 = -1, Xp = -1, X5 = -1, etc., etec.
ribs are subjected to bending, and the spars to bending and tor-
sional stresses (Fig, 2).

In general, let -

Y, denote the bending moment resulting when Xy = -1

Hq n n ] T 1t n Xq = .1
Tp " " forsional " f " Xp = =1
Tq n n n W n " Xq = =1

for any section of the wing framework.

* Muller-Breslau: "Die neueren Methoden der Festigkeitslehre und der
Statik der Baukonstruktionen" (Recent methods of the theory of the
statical strength of framed structures), T.B.1913, p.309.



Further, let -

I denote the equatorial moment of inertia of the spars,

I, L " u .on 1" "mor ribs,
Ip w " polar moment of inertia of the spars,

E # " modulus of elasticity,

S " n " * ghearing,

-and we get -

M. M T T M., ¥ *
=J 20 49 gx Zp__"4 3¢ 4G gz
S R +f'szp +IEI,’
where the first two integrals are taken over both spars and the
last one over all the ribs. The section of the spar has, for the
sake of simplicity, been assumed to be eircular or annular, If

this is not the case, it becomes necessary %o introduce the ex-

in place of Ip.*
On the assumption, which corresponds with actual conditions,

that

we obtain -
EI Spg=/Yp Mg dx + 5/ Tp Tq dx + 6/Mp Yy ds.

The evaluation of E x I x § .follows at once from Figs, 3 to

* Tbid p. 211 and 255.
** "Hyutte" 22nd edition, Vol. I, pp. 570-1.
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7, in conjunction with Table 1. The calculation of E X I X &pg
will be exhibited here for easy comprehension. The bending and
torsional moments produced in the spars under the conditions,

Xp = -1, Xg = -1, are indicated in Figs., 4 and 6, Fig. 7 shows
the bending moment in.the rib b or d, and in the end rib

A - G, The distance between the ribs is taken as s, and the dis=.
tance between the spars at the same time as 2s. By reason of the
load Xp = -1, pressures arise in the spars of the magnitudes

* g and t-g and the bending moments on the spars, for the

parts from A and C as far as to the rib b,r are, therefore:

b
from rib/to rib q:

h

ir B 8 _ 43 ~+[ 185 _ 2 ¢ ]
M, (g2 +(8 1) £] (s -5
from rib -d 4o rib *h:

Mp = % 2 x°

In the same manner, from XZg = -1 (Fig. 8) for the parts from

A and C wup to rib b, there arises the moment:
Ms = = &
d ) X
From rib b to rid 4:
Md'=fc§(23+§)
From rib 4 +to rib h:

My = i-% x!



Thus we obtain:
1
1 = : 3 =
IMP q Ox Bféa[b fg dx

28
- 6 4 °8 r12 2 4
€S
2 2 <! = 176 3
+ é g X' g% ax' 3 = 13 S°
The torsional moments of the spars arising from Xp = -1 aTe:-

For the parts from 4 and C %o rib ©b:
To=ts

From rib b %o rib h:

T,

B, = 0 (See Fig. 4).

and from ZXg = -1
for parts from A and C %o rib 4:
Tg=%s

From riv 4 $o rib h

i
o

Tg

Hence -

s
s s d&x =-%? g3,

ol

. 3
[ Tp Tq dx =33

O N

and finally from Xp = ~1, there arises in the rib b and in the
end rib AGC the bending moment Uy = + z (compare Fig. 7).

For the remaining ribs we find My = O.

In the same manner, we obtain with Xg = -1 in the rib 4
and in the end rib AG: Mg =+ z and in the remaining ribs,

Md=0.



We therefore, get -

8
6 fMp Mg dz =23 86 _é z z dz = 46°
The integral extends here only over the end rib because
MP X g = 0 for all the other ribe, Thus, we obtain -

E I 06pg = l%g 8 + l% g% + 4s8® = éig g3

The other coefficients of the unknowns given in Table 1 have

been determined in a similar manner.

3. Determination of EPp X Opg

In the case where the same load P acts at each node of a
spar, we have in general: X Py &pg =P I8p4. Since the loads
P act at the same points of the spars as the shearing forces
Xa, Xp, X¢, etc., and as they only produce bending moments in the

one srar, the values ©&pmg may be taken direct from Table 1,
column 1.
E I IP, 6ma=2'—fi—é(49+81+95+94+81+59+

3 245
= P
-+ 31) =} 12 B

- E I EP, & (81 + 1244 + 175 + 176 + 153 &

8:(18

+ 1123 + 53) s® = 4?2 P g3

E I XPp O&pg = 2x12 (856 + 175 + 235 + 334 + 307 +

585
+ 153 4+ 81) s® = 13P
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E I 5Py Opg = giqgy (94 + 176 + 334 + 256 + 334 +
+ 176 + 94) &® =-§%§ P 3
E I 2Py Bpe=E I IPy &po = 222 P &°,
E I 5Py 8y =E I EPp &y = 253 P s°,
E I 5B, Spg =E T ZIPy 8pg = 22 P 2,

E I 3P, b&gn = O.

3. Calculation of the unknowns,

We obtain?
1. 177Xy + 161%y + 175%g + 174Xg + 181X, + 139X¢ +

'+ 111%g + 80Ky = 345P,

3. 161Xy + 304Xy + 267Xg + 288Xg + 365%e + 234%Xr +

+ 171X + 113Xy = 450P,

3. 175%5 + 287¥p + 417Xc + 378%Xg + 351Xe + 297Xf +
+ 235Xg + 144Xy = 585F,

4. 174X, + 288%p + 378Xg.+ 480%Xg + 410Xe + 352%Xf +

+ 370Xg + 176Xn = 633P,

5. 161Xy + 265X, + 351X, + 410Kg + 481%¢ + 383Kg +

+ 303Xg + 308Xp = BB5P,

eto.
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8. 80Xz + 113Xp + 144Xc + 176Xg + 2308%e + 240%f +
+ 213&g + 352Kn = O.

Since, from symmetry, Xg =X, X¢ = Xy, Xg = X,
the first five equations are sufficient to determine the unknown.

Equation 8 serves as 2 check.

1. 388Xy + 300Xy, + 338X, + 174X3 + 80Xy

It

245P,
3. 332Xy + 538Xy, + 553K, + 388Xy + 113Xy, = 450F,

3. 400X + 584Xy + 768Kq + 378Xg + 144Xy = 58BP.

4. 444%g + 640Xy + 788X, + 480%Xg + 176Xy = 8323P,

5. 484X, + 648Xy + 832X, + 410%X3 + 208Xy = 585P,

8. g + Ky + Ko + 2Xg + v &y = 0.

Since the shearing force in the uncut rib is equal to Xy,
owing to the symmetry, it would have been possible to obtain
equation 8 from the equations for moments in the longitudinal axis

of a spar.
We have from the equations 1 to 5:
Xg = + 0.544 P,
Xo = + 0,497 P,
Xp =+ 0,315 P,
Xa = - 0.117 P,

Xy = - 0.967 P.

These values put in equation 8 give:
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2 (0,497 + 0.315 —~ 0.117 - 0.967) + 0.544 = O,
3 (- 0.273) + 0.544 = 0O,
c =0,

Then the forces P - X act on the loaded spar, so that:
Pg =+ 0.456 P,

P, = + 0,503 P,
Pp = + 0,685 P,
Pp = + 1.117 P,

Py = + 1.967 P,

4. Bending moments and stresses.

In Fig. 8, the forces on the loaded spar are plotted as ordi-
nates and the end points joined by a smooth curve. The curve Te-
sembles a parabola. The horizontals which unite the end points of
the loads P were drawn for comparison., It is known that the load
is transferred from the center to the supports on account of the re-

action of the ribs, The maximum bending moment is

Ps (3.533x4 - 1.117 X3 - 0.885%x23 - 0,803 x1) =

Mpax =
= 4,908 P s
against -
Mpax =P s (3.5X4 -3 -2~ 1) =8,000P s.

The maximum bending moment, therefore, only amounis roughly to

é% of that obtained when the effect of the ribs is neglected.
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The areas of both moments have been rlotted for comparison in
Fig. 9. Fig. 10 shows the course of the moments of torsion on each
of the two spaxs,

The main stress is only slightly increased by the torsisnal
‘moments as will be seen from.the following calculation.

For a circular section, for instance, in the section a~b
where the torsional stress is greatest, there arises,

tke normal stress: O = éL%ég Psr

1.084 5 5 1

the shearing stress: T 3T

ff

_1.084 4 _ 0.137 o.

g0 tha'.‘E" ' T X 3. 549

With m =3 and &, = 1* we obtain the principal stress:

P

Omax = 0.333 O + 0,667 /o" + 4%X0,137% o0%=1,03 0.

For the section at the center of the spar we get:

¢ = 0.0377 O,

Opax = 0.3330 + 0,867 foz+ 4% 0.0277° 0°=1.001 ©.

The increase of the principal stresses is, therefore, insig-
nificant both in the section of maximum torsion (3.5%) and in the

section of maximum bending moment (0. 1%).

The bending moments in the ribs are also of such ma.gnitude
that they can well be obtained from the present sections., In the

worst case, in the rib h -

M =0.967Ps =nr % Miax.

* Compare "Hutte" 22nd edition, Volume 1, p.527.
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Since the moment of resistance of the ribs is generally 1/6
to 1/8 of the moment of resistance of the spars, there is no dan-

ger of the ribs being overloaded.

5. Conclusion.

The above investigation demenstrates that the loads are dis-
tributed between the spars in a satisfactory manner by means.of
Tibs. In general, this results in an increase in strength, since
in most cases the external forces act very unequally on the two
spars. If the forces act only on one spar, or on one spar uUpwArds
and on the other spar downwards, then the gain is considerable,in
the present instance aboul 40%. The investigation only proves
this, however, for simpie bending, but similar ccrclusions may be
drawn for buckling, as the deflections will be diminished in the
same proportion as the bending mements,

This favorable result brings up the question, whether in se-
lecting methods for calculating airplanes, with the object of ap-
rroximating the actual stresses as closely as possible, the results
will not be too unfavorable. The calculaition of siresses with a |
multiple of the load, for instance, is not used for other purposes,
not even in bridge building, where safety is as important as in an
girrlane, |

Would it not be sufficient if factors of safety were determin-
ed from the stresses of unitary load? The breaking teste with

wings show that the stresses mlculated with‘unitary load come
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nearest to the actual conditions.

Apart from the fact that the calculations with o multiple of
the load fregquently lead to impossibdle dimensions of the spar, the
diminished work, at least in the design of new airprlanes, should
not be underestimated, But even theoretically, it is more correct
to use the rules and formulas within the limits of proportionality

for which alone they hold good.

Appendix:- For the case where the moments at the center of the
ribs are not zero, there must be introduced for each section
&, b, ¢, .... h; a moment X'y, X'p, X'g, .... X'n. The elastici-

ty eduations, under the same assumptions as before, are then
1. Xa % + X'a Oata + Xp fpa+ X'p Opra + Xo Hoa +
+X'c 8'a+.... = EPm Opa,
2. Xa Baa' + X'a Batar + Xp Opar 4+ X'p Oprav 4+ Xo Boar +
+ X's Ogrgt + ... = IPp Opgr
3. Xa Bab + X'a b +Xp Opp + X'p Opib + Xo Oob +
+ X' Scth + .... = TPm Omp
o}

4. Xg Bapt + X'a Oatpt + Xp Oppr + X'p Oprpr + Xg Bopr 4

+ X' Botb! + vev. = EPp  Sppe

L4 - » - - - - - - - - - - - - - - - - - - - . Ld - - - - .

etc. t0 16.
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If 41 denotes the point of application of any shearing force

Xjy» and k' denotes the point X'y, we have, as above:

-
=

'5ik!=f%—¥ﬂax+j Eé—%'—dau f%-—Mkl:&z
Thé moment Xp' = -1 produces the moments Mp' and Ty
for both halves of the wing with the same sign, The shearing force
£i = -1 moments M; and T; with opposite signs,
From symmetry, we accordingly have:
6 1 =0

If, therefore, we substitute in equations 1 to 168 -

5a'la .=_ 6b|a -T; 50'& =T e = O
Gaal = 6bal = éca" = e & O
6alb = Sptp T 6C'b = ieee =0

etc.
we obfain two groups of eight equations, each with eight unknown
quantities, of which the first group contains the unknown quanti-
ties X5, Xp, X5, ete,, and the second group only the unknown quan-
tities X'y, X'y, X'y, ete. The first group agrees with the equa-

tions given at the commencement of the present paper while the sec-

ond group is as follows:
1. Xtg Salal + X'y 6b'a' + X'g 69‘3' + cvee = IZPp 5ma':
2. X'a Satpt + X'y Oprpr 4+ X'o Bgipt 4 ... = EPp Sy,

3. X' Guigt + X'y Sprer + X'g it +.... = IR, 6mcl

etec. to 8.
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. As the loads P only produce berding momente in the spars
and the loads X'y = -1, X'y =-1, X'g = -1, etc, only produce
bending moments in the ribs and torsional moments in the spars,
we get

SPm Oma! = ZPp Spbt = IPp Opmet .... =0
The right hand sides of the last eight eguations are, there-

fore, zero,
Por the coefficients of the unknowns, we obtain, in accordance

with the previous work:

, < ]
4 8 2 _ 8 _
E I 8315 =2 3 .é 1° dx + 4 X 8 _é 1 dz = z 8+ 34 8 =
, .80,
E I Oipt =E I 8ot =E I bgrgt = ..., =
8 g
4 2 44
=2 3z [1ax+23x6 [ 1 dz="%3s,
2g
4[ 2 8 2 16
= = 1 dz =737 8 +
E I sb!'bl 3 3 o 1 dX+4X6j; A 3

88
+248=38,

E I Bpigr =E I Bpigr=E I Opigrt =..,. =

4 * 2 8 2
=2 3 J T d&x+23x86 f 1 dz
¢ b

it
A

(o1}
“

ete.
Multiplying by 3/4-we obtain:
1. 30X's + 11 X'y + 11 X' 4+ 11 X'g + 11 X'g + 11 X' +

+ 11 X'g + 11 X'y = O,
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8. 11 X'y + 32 X'y 4+ 13 X'e + 13 X'g + 13 X' + 13 X'p 4

+ 13 X'z 4+ 13 X'y = 0,

3. 11 X'y 4+ 13 X'y 4+ 24 Lo + 15 X'g + 15 X' 4+ 15 X's 4

+ 15 X'g 4+ 15 X'y, = 0,

% 11 X'a +13X'p + 15X'g+ 36 X'g + 17 X'g 4 17 X' 4

+ 17 X'g + 17 X'y = 0,

5 11X + 13 X'y + 15X'g + 17 X' + 238 X'y + 18 X'y 4

+19 X'g + 19 X'y = 0,

8. 11 X'a + 13X'p + 15X 4+ 17 X'g + 19 X'y + 30 X'p 4

+ 31 X'g + 21 X'p = 0O,

7o 11 X' + 13X'y + 15 X' + 19 X'g + 19 X'e,+7215X it
+ 32 X'g + 23 X'y, = 0,

8 11 X'a + 13Xy +15X', 4+ 17 X'g+ 19 X' 4 21 X'p 4

+ 33 X'g + 34 X'y = o,

These equations can be reduced to the form:

1, Q0Xty — Ky = 0,
3. -9X'z + 30X'p - K, = o,
3. =-9K'y + B0X', - X'y = O,
4. o]

—9X'c -+ BOX'd -— 9X'e =

4
a

.
-
b L] L4
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If we substitute in these eQuaticns:

X'y =4 2z, +B 2z,
X'y =A 224+ B z 2

A 2,°+ B z

- . - - - . . -

- - . - . . » - -

bd
L] a4 [ Q
I

X'g:A Zig-i- B Z’ZZ

- = ‘. B 8
. X'h =4 2%+ B z}8

where 3z, and z, are the two real roots of the eguation -~
—922+ZOZ-9=-0
we obtain from equation 1,
20 Az, +Bz)-9 A&z?4+8B32z°)=0

or
’ A (20 z, -9 2,2) +B {20z, - 9 3,2 =0

But, by assumption, we have -
20 z, - 9 2z,° =20 z, - 9z,° =+ 9
whence, A must equal -B.

\
We find from equation 8:

-9 (A 2,7 +Bz7) +2 (A 2°% +B3z,%)=0

or, with A egual to -B,
A [ -9 z," + 30 z,° + 9 3,7 ~ 20 z, 1=0,
A [2z," (-9 + 20 21} - 227 (-9 + 20 )] = 0.

But, by assumption:
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-9 + 30z, =9 2,7,
~9 + 30 z, =9 2,5
therefore, ‘

A (z,°-137) =0,

Since (219 - z:’) = 0 cannot become zero in this equation,
we find that A and, consequently, also B must be zero. From

this it follows that -

Translated by
National Adviscry Committee
for Aeronautics.
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